Several days or just a single day? LiDAR chooses for you! | | flight altitude | point density
(SZT-V100 / SZT-V200) | estimated coverage | | |---|-----------------|--|----------------------------------|-------------------------------| | | | | per flight (SZT-V100 / SZT-V200) | per day (SZT-V100 / SZT-V200) | | 7 | 40m | 165~231 / 276~546 pts/sq.m | 0.13 / 0.372 sq.km | 1.3 / 3.72 sq.km | | 2 | 55m | 120~168 / 198~396 pts/sq.m | 0.20 / 0.512 sq.km | 2.0 / 5.12 sq.km | | - | 70m | 94~132 / 156~312 pts/sq.m | 0.35 / 0.651 sq.km | 3.5 / 6.51 sq.km | | | 90m | - / 121~242 pts/sq.m | - / 0.837 sq.km | - / 8.37 sq.km | | | 120m | - / 91~182 pts/sq.m | - / 1.116 sq.km | - / 11.16 sq.km | Note: the data shown above is based on flat terrain conditions for job reference only, and the estimated coverage per day is computed with 6m/s flight speed, horizontal FOV 80° and 10 flights in total. Complex terrain of elevated areas or vegetated zones might reduce the work efficiency somehow. With the same laser emitting power, the point density varies greatly from reflective distance and reflective ratio of the target, moving speed of the carrier and air permeability. Theoretically, higher point density is possible with customized flight plans while bigger coverage figures are expectable with increased flight numbers. | | roadway to scan per day (for both models) | | | |----------------|---|-----------|--| | scanning speed | 1-3 lanes | 4-6 lanes | | | 18 km/h | 108 km | 54 km | | | 36 km/h | 216 km | 108 km | | | 54 km/h | 324 km | 162 km | | # Applications in Power Transmission Industry - fast and contactless 3D data capture of power lines and ground surface attachments - to provide visualized and analytical management for existing power lines network - to identify defects on transmission lines through geo-referenced point cloud - ideal for digital transfer of survey, design and engineering accomplishments ## Disaster Monitoring & Emergency Response - laser scanning is unaffected by light conditions while airborne mode won't suffer from traffic chaos - to obtain topographic data and terrain features in disaster areas for realtime analysis - quick reference for disaster relief and post-disaster reconstruction arrangements ### Irrigation System Development - to conduct topographic survey with data capture of vegetations and ground objects - to obtain high-precision digital terrain model and orthophoto map for irrigation works planning - ideal for location optimization, engineering control, landslide monitoring, flow direction analysis, etc. #### **Topographic Survey Jobs** - highly efficient aerial data capture for topographic or cadastral survey - excellent elevation accuracy control within centimeter level - ideal for highly vegetated areas due to canopy penetrations - ready for aerial lasergrammetry in places hard to reach or hard to track GPS signals ### Traffic Network Development - highly efficient terrestrial data capture by linear mobile laser scanning - designed for topographic survey of road/railway system development or expansion - tailored to asset inventory survey of road/railway system against maintenance and evaluation - an ideal alternative of total station or RTK survey due to a variety of satisfactory outputs #### Forestry Investigation & Planning - highly efficient aerial data capture for topographic survey in jungles or forests - to obtain abundant indicative information such as tree height, stem diameter, canopy shape, etc. in short time - ideal for species identification, deforestation planning & investigation